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ABSTRACT

A model for vertebrate skin patterns is presented in which the differentiated (colored)
pigment cells produce two diffusible morphogens, an activator and an inhibitor. The
concentrations of these two substances at any point on the skin determine whether a
pigment cell at that point will be colored or not. Computer simulations with this model
show many realistic features of spot and stripe patterns found in vertebrates.

INTRODUCTION

The color patterns on vertebrate skin are of great importance to the
survival of the organism because they are involved in camouflage, species
identification, and warning patterns. The theoretical problem of the morpho-
genesis of these patterns is therefore of interest from an evolutionary point of
view as well as being a fascinating mathematical problem in its own right.

Typical skin patterns are spots or stripes which are formed by specialized
pigment cells (melanocytes). Innumerable variations of spot and stripe pat-
terns are found in fish [2] and mammals {12]. The problem of how skin
patterns are formed becomes a description of how the colored pigment cells
are distributed on the embryonic skin.

The prevailing theoretical answer to this question is that pattern formation
is governed by reaction-diffusion processes of the Turing type [1,8]. In this
scheme, the uniformly distributed pigment cells produce two or more species
of morphogen molecules which react with each other and diffuse in space to
produce a pattern of concentrations with a characteristic wavelength. These
morphogen concentration “prepatterns” then induce the differentiation of
the pigment cells, producing a permanent pattern similar to the prepattern.
The calculated patterns are dependent on initial and boundary conditions,
and show many of the characteristic forms observed in vertebrates.
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The Turing model for skin patterns has not yet been tested experimen-
tally, but evidence is accumulating from studies on cold-blooded vertebrates
that there are several types of pigment cells which can interact with one
another and change each other’s properties [5,6,11]. This evidence suggests,
contrary to the Turing model, that the intercellular interaction is local,
possibly due to short-range diffusion of morphogen molecules or to direct
cell contact. In this paper I explore an alternative to the Turing model which
involves local cell interactions and which also gives rise to an interesting
spectrum of pigment patterns.

THE MODEL

I propose an activator-inhibitor diffusion theory developed originally by
Swindale [13] for the study of patterns in the visual cortex of the brain. As a
simplified initial condition, I imagine on the early embryonic skin a uniform
distribution of pigment cells, containing a mixture of differentiated (colored)
cells (DCs) and undifferentiated cells (UCs). A simple mechanism for the
production of this mixture might be a slow random process of differentiation
in the UC cell population. Each DC produces an inhibitor morphogen which
stimulates the dedifferentiation of other nearby DCs, and an activator
morphogen which stimulates the differentiation of nearby UCs. The two
substances are diffusible, with the inhibitor having the longer range. The UCs
are passive and produce no active substances. The fate of each pigment cell,
UC or DC, will be determined by the sum of the influences on it from all
neighboring DCs.

The processes of production, diffusion, and decay of morphogens can be
modeled by a generalized diffusion equation:

3—;;1~=v-D-vM-KM+Q, (1)
Here M = M(x, 1) is the morphogen (either inhibitor or activator) concentra-
tion, and the terms on the right are diffusion, first-order chemical transfor-
mation, and production, respectively.

Each DC produces at constant rate two morphogens, an activator MV
and an inhibitor M®, which diffuse away from their source and are
uniformly degraded by the neighboring cells, according to Equation (1). The
resulting steady-state distributions of the morphogens about a DC are shown
schematically in Figure 1(a). Together, the two morphogens constitute a
“morphogenetic field” w(R), where R is the distance from the DC, which is
“read” by nearby pigment cells in the skin. The “reading” process
1s modeled by assuming that the net activation effect found close to the DC is
represented by a constant positive field value, and the net inhibition effect
found further from the DC is represented by a constant negative field value.
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This is shown in Figure 1(b). The activation region is a small circular area
about the DC with a large constant positive field value. The inhibition region
1s the outer circular annulus with a small negative field value. The integrated
field over the cells in the whole circular area must be close to zero in order to
avoid the complete dominance of either activator or inhibitor.

This model is similar to inhibitor theories of patterns formation, for
example of hair follicles in mammalian skin [3], or of leaf primordia on the
shoot apex of a green plant [7]. However, pure inhibition theories are only
capable of producing spattal patterns of pointlike structures. In our case, we
need connected regions of differentiated pigment cells, and this requires
short-range activation as well as long-range inhibition.
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Fic. 1. A schematic illustration of the local activator-inhibitor model. In (a) the
steady-state activator and inhibitor concentrations about a differentiated pigment cell are
shown. The inhibitor has a longer range than the activator. In (b) the combined (field) effect
of activator and inhibitor is modeled with constant positive and negative circular regions.
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CALCULATIONS

The calculation begins by distributing DCs randomly on a rectangular
grid of points representing pigment cells. Then for each grid point at position
R, the field values due to all nearby DCs at positions R, are added up. If
Y w(R—R,;[)> 0, then the point at R becomes (or remains) a DC. If
L.w(]R—R,;) =0, the point does not change state, and if X w(]R—-R,]) <0,
the point becomes (or remains) a UC. By simplifying the morphogenetic field
as shown in Figure 1 and by discretizing the cell positions, I have converted a
continuum model [Equation (1)] into a cellular automaton [14]. Cellular
automata are very useful for computational purposes because they simplify
the problem at hand while retaining the essential features required for
exhibiting self-organization phenomena. This is justified by the observation
that very nearly the same results are obtained [13] when w( R) is a continuous
function, as in Figure 1(a). The process of summing the morphogenetic fields
and changing states for each grid point is repeated until the resulting pattern
no longer changes. I find that five iterations suffice for convergence to a
stable pattern, and that the general form of the final pattern is not sensitive
to the initial DC distribution.

w, = -0.34 0.28

F1G. 2. Patterns produced with the activator-inhibitor model. The activation arca has a
radius of 2.30, and the inhibition area has an outer radius of 6.01. The activation ficld value
w; is + 1.0, and the inhibition field value w; is varied as indicated in the four examples. As
inhibition is decreased (left to right), the spot pattern connects up into a pattern of stripes.
Each panel is 25100 in the arbitrary grid units.
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One useful demonstration with the model is the close relationship of spot
and stripe patterns. Many vertebrate species are spotted or striped, and some
tropical fish genera show combinations of these patterns on the same
individual [2]. Since it is unlikely that stripes and spots arise from wholly
different mechanisms, a useful theory must be able to generate both patterns.
This is done in Figure 2. Here the outer radius of the inhibitor area is 6.01,
the radius of the activator area is 2.30, and the spacing between adjacent grid
points is 1.0 in arbitrary units, The activator field value is fixed at 1.0, and
the inhibitor field value is varied to produce different patterns. When the
inhibitor is strong (Figure 2, w, = —0.34), the DCs cannot form connected
masses, and instead form isolated spots. As the inhibitor weakens, the spots
connect up with each other until well-developed stripes appear. With very
strong inhibition, the pattern will consist of isolated DCs on an uncolored

FI1G. 3. Pattern produced with an anisotropic activator-inhibitor model. The activator
area is an ellipse (x2/a% + y2/b% =1) with axes a; =230, b, =1.38, and the inhibitor area
is an ellipse with axes a, =3.61 and b, = 6.01. The panel is 60100 in the arbitrary grid
units,
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background. With very weak inhibition, the pattern will be a solid mass of
color. All of these patterns are found in the vertebrates.

The striping patterns in Figure 2 are isotropic, with no preferred direction,
whereas in real skin patterns such as on the zebra, there usually is a preferred
direction. Directionality can be introduced by assuming that the diffusion of
activator and inhibitor are nonisotropic. This was indicated in Equation (1)
by the tensor form of the diffusion constant. Anisotropy has been observed
in the morphogenesis of pigment patterns in fish [11], and it is also consistent
with the concept of polar transport [15], which has been used to explain the
effects of tissue polarity in pattern formation. Thus in tissues showing
polarity, we expect that the perpendicular components of the diffusion tensor
will be unequal, ie., D, # D, . In the model calculations, this can be
introduced by changing the circular areas in the w(R) field to ellipses. An
example is shown in Figure 3. The inhibitor is polarized perpendicular to,
and the activator parallel to, the stripes. The idea of preferential diffusion of
morphogens in perpendicular directions is not new [4,9,16], but it does not
have a clear biophysical explanation and must at present be considered only
as an interesting hypothesis.

DISCUSSION

Both this model and the Turing reaction-diffusion model (actually consist-
ing of a large class of specific chemical kinetic models) predict basic features
of vertebrate skin patterns. In certain details, however, they are different. For
example, the activator-inhibitor model pattern in Figure 3 shows both
branching and termination of the colored stripes, features which arise from
the random initial distribution of DCs, and which are also observed in zebra
coat patterns. The Turing models studied to date [1,8] do not show these
features, possibly because of the more deterministic nature of these models.

Although the suggested mechanisms of activation and inhibition in this
paper are diffusion processes, this assumption is not necessary. The model
when reduced to the morphogenetic field concept shown in Figure 1(b) is a
simple logical algorithm involving on-off switching of cell differentiation
according to a threshold variable. The variable need not be the concentration
of a diffusible substance. It might instead have to do with direct cell contacts
or with local elastic strains in the underlying tissues. The tissue polarity
indicated in Figure 3 might have more to do with unidirectional macromolec-
ular arrays than with anisotropic diffusion. I believe that the diffusion
mechanism is the simplest explanation of the pigmentation process, but it is
certainly not the only explanation.

Also, the model construct of a static random mixture of differenttated and
undifferentiated pigment cells is an oversimplification. A more realistic
model might allow the migration of pigment cells toward or away from other
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pigment cells according to “attractive” or “repulsive” interactions. Finally,
the assumption of only one type of pigment cell is also an oversimplification,
since there are known to be several types [5]. Swindale’s original model [13]
in fact postulated two cell types. The usefulness of the model is not so much
in its detailed assumptions, but rather in its logical structure. The fact that a
model with a very simple logical structure can reproduce many of the
observed features of a pattern strongly suggests that the actual pattern
mechanism is also simple, and this is the principal conclusion to be drawn
from the present work.

This model could be generalized to generate multicolored patterns, which
are common in vertebrates. Also, the topology of striping patterns has been
closely studied in connection with the problem of classifying fingerprints [10],
and the formal similarity of the patterns on zebra skin and in fingerprints
suggests that the morphogenetic mechanisms may be similar.

More detailed and realistic models of vertebrate skin patterns might best
arise from experimental work specifically aimed at elucidating the mecha-
nism which controls pigment-cell differentiation. Specifically, one would like
to know whether the mechanism involves chemical waves on a uniform
cellular substratum, or short-ranged interactions between pigment cells, or
something altogether different. Once this is determined, a computer model
can then be constructed to investigate how a color pattern emerges from the
multicellular system.
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